Skip to main content

BJT (bipolar junction transistor)

A bipolar junction transistor is a three terminal semiconductor current controlled device with two P-N junctions. The three terminals are emitter(E), base(B) and collector(C). the emitter junction is heavily doped, base is less doped and made very thin and collector terminal is moderately doped. Collector has grater size than emitter and base terminal is thinner than both. (The thinner the base, the stronger the E-C electric field, and the larger the impact of a small current injected into the base. Explained clearly in active mode operation below) emitter terminal is moderate in size.

A BJT has two types of transistors:

  1. NPN transistor

  2. PNP transistor


NPN transistor :


In an NPN transistor a p-type material is sandwiched between two n-type materials.


[gallery ids="979,978" type="rectangular"]

PNP transistor :


In a PNP transistor a n-type material is sandwiched between two p-type materials.


[gallery ids="989,990" type="rectangular"]

Operation modes:

A BJT has three modes of operation

  1. Saturation mode

  2. Cut-off mode

  3. Active mode

  4. inverted active mode


Saturation mode:

In this mode transistor acts as a closed switch current freely flows from collector to emitter.

For this both emitter-base and collector-base junctions should be forward biased. This makes emitter and collector terminals short-circuited. For this base voltage must be grater than collector and emitter voltages.

equation-saturation-voltages

Cut-off mode:

Cut-off mode is opposite of saturation mode. It acts as open switch when both the junctions are reverse biased. there is no collector current therefore no emitter current. the base voltage will be less than both the emitter and collector voltages.

equation-cutoff_voltages.png

Active mode:

In this region transistor acts an amplifier. For this emitter-base junction should be forward biased and collector-base junction should be reverse biased (emitter-base voltage is grater than zero and collector-base is negative).

Transistor as an amplifier:

A signal is amplified when it is sent from low resistance to high resistance. Here also same thing happens when emitter-base junction forward biased offers low resistance and collector-base is reverse biased offers high resistance.

Working of NPN in active mode:


2000px-npn_bjt_basic_operation_active-svg




  • Emitter-base forward biased and collector-base reverse biased.


equation-active_voltages

  • The electron in emitter region(n-type) are repelled from the negative terminal of the battery towards junction and enters in to base region(p-type) as junction is in forward biased condition acts same as P-N junction diode.

  • Width of the base region is very thin and lightly doped and hence only a few electrons will combine with holes in the p-region (i.e 2-5%).

  • Remaining electrons are able to drift across the base and enter the collector region. They are swept by positive collector voltage.

  • For every electron flowing out the collector and entering the positive terminal of battery, an electron from negative terminal of battery enters to emitter region.

  • In this way electron conduction takes place continuously so long as two junctions are properly biased.


current conduction in NPN transistor is due to electrons. In case of PNP transistor conduction is due to holes and follows same mechanism.

beta_equation_1                Here β is amplification factor.

alpha_equation_2               α is the common-base current gain.

you can relate both  α and β as follows

alpha_beta_equation_1

characteristic curves:


 

tran27

Comments

  1. […] are basically classified into two types; they are Bipolar Junction Transistors (BJT) and Field Effect Transistors (FET). The BJTs are again classified into NPN and PNP transistors. The […]

    ReplyDelete
  2. […] →2.3 BJT (bipolar junction transistor) […]

    ReplyDelete

Post a Comment

Popular posts from this blog

inductor

An inductor is a passive electronic component that stores energy in the form of a magnetic field. In its simplest form, an inductor consists of a wire loop or coil. The inductance is directly proportional to the number of turns in the coil. Inductance also depends on the radius of the coil and on the type of material around which the coil is wound.   The standard unit of inductance is the Henry abbreviated H. This is a large unit. More common units are the micro Henry, abbreviated µH (1 µH =10 -6 H) and the milli Henry, abbreviated mH (1 mH =10 -3 H). Occasionally, the nano Henry (nH) is used (1 nH = 10 -9 H).             inductors in series & parallel : applications : Inductors are used extensively in analog circuits and signal processing. Applications range from the use of large inductors in power supplies, which in conjunction with filter capacitors remove  fluctuations from the direct current output.          

Transistor

Introduction: A transistor is a semiconductor device which is used to amplify the signals as well as in switching circuits. Generally, it consists of three terminals emitter(E), base(B) and collector(C) and two P-N junctions. It is one of the active components. It was invented by John Bardeen, William Shockley and Walter Brattain in 1948, in Bell Telephone Laboratories. Transistors are divided into different types depending on their construction and operation. Transistors are basically classified into two types; they are Bipolar Junction Transistors (BJT) and Field Effect Transistors (FET). The BJTs are again classified into NPN and PNP transistors. The FET transistors are classified into JFET and MOSFET. Junction FET transistors are classified into N-channel JFET and P-channel JFET depending on their function. MOSFET transistors are classified into Depletion mode and Enhancement mode. Again depletion and enhancement mode transistors are classified into N-channel JFET and P-channel. d...

schottky diode

introduction: schottky diode is named after named after German physicist Walter H. Schottky.  it is also called as hot carrier diode or surface barrier diode. [caption id="attachment_729" align="aligncenter" width="289"] symbol of schottky diode[/caption] construction : In P-N junction diode semiconductor(P-type)-semiconductor(N-type) junction is formed but, in the case of schottky diode metal-semiconductor junction is formed. basically metals used are molybdenum, platinum, chromium, tungsten Aluminium, gold e.t.c and the semiconductor used is N type silico n is used. working : Schottky diode is often referred as “majority carrier diode”.. When materials are joined, electrons in n-type silicon immediately flow into metal because the electrons in semi conductor are at higher energy level than metal and hence electron flow is established. The flow of electrons stops when Fermi level of two materials are at same level. Due to flow of electrons into m...