Skip to main content

capacitor

INTRODUCTION :


The capacitor is a component which has the ability or “capacity” to store energy in the form of an electrical charge producing a potential difference (Static Voltage) across its plates, much like a small rechargeable battery.

CAPACITANCE :


Capacitance is the electrical property of a capacitor and is the measure of a capacitors ability to store an electrical charge onto its two plates with the unit of capacitance being the FARD (abbreviated to F) named after the British physicist Michael Faraday.



Capacitance is defined as being that a capacitor has the capacitance of One Farad when a charge of One Coulomb is stored on the plates by a voltage of One volt. Capacitance, C is always positive and has no negative units. However, the Farad is a very large unit of measurement to use on its own so sub-multiples of the Farad are generally used such as micro-farads, nano-farads and pico-farads, for example.

Standard Units of Capacitance



  • Micro farad  (μF)   1μF = 1/1,000,000 = 0.000001 = 10-6 F

  • Nano farad  (nF)   1nF = 1/1,000,000,000 = 0.000000001 = 10-9 F

  • Pico farad  (pf)   pf = 1/1,000,000,000,000 = 0.000000000001 = 10-12 F


CONSTRUCTION & WORKING  :


The basic construction of all capacitors is of two parallel metal plates separated by an insulating material.

Untitled-2.jpg

TYPES :


Capacitors are divided into two mechanical groups: Fixed capacitors with fixed capacitance values and variable capacitors with variable (trimmer) or adjustable (tunable) capacitance values.

Fixed_capacitors_overview.svg.png

CAPACITOR IN SERIES & PARALLEL :


Untitled-3.jpg

Comments

Post a Comment

Popular posts from this blog

Tellegens Theorem

Tellegen theorem states that  the summation of instantaneous powers for the n number of branches in an electrical network is zero. Suppose n number of branches in an electrical network have i 1 , i 2 , i 3 , .............i n respective instantaneous currents through them. These currents satisfy Kirchhoff's Current Law . Again, suppose these branches have instantaneous voltages across them are v 1 , v 2 , v 3 , ........... v n respectively. If these voltages across these elements satisfy Kirchhoff Voltage Law then,

relay

A relay is an electrically operated switch. These are remote control electrical switches that are controlled by another switch. A relay is used to isolate one electrical circuit from another. It allows a low current control circuit to make or break an electrically isolated high current circuit path. The basic relay consists of a coil and a set of contacts. The most common relay coil is a length of magnet wire wrapped around a metal core. When voltage is applied to the coil, current passes through the wire and creates a magnetic field. This magnetic field pulls the contacts together and holds them there until the current flow in the coil has stopped. The diagram below shows the parts of a simple relay. Operation: When a current flows through the coil, the resulting magnetic field attracts an armature that is mechanically linked to a moving contact. The movement either makes or breaks a connection with a fixed contact. When the current is switched off, the armature is usually returned by

Fundamentals of Electromagnetism

Electrostatics Columb’s law  Electric Flux density & Electric field intensity Magnetic Flux density &Magnetic field intensity Gauss law Energy density Continuity equation Magneto statics Biot- savart law Amperes circuit law Magnetic momentum & magnetic flux Boundary conditions Applications (Hall effect) Lorentz force equation conduction, polarization & magnetization Maxwell equations Faraday law, ampere law, gauss law of electric and magnetic fields Law of conservation of charge & boundary conditions Hertzian dipole