Skip to main content

Diode

Frederick Guthrie invented the diode in 1873, but did not put it into practical use. Thomas Edison independently developed it in 1880, then used it in his 1883 patent of the incandescent light bulb. John Ambrose Fleming received the first patent on the diode itself in 1904.

A Diode is a two terminal active component that conducts primarily in one direction.

Diodes are one of the simplest, but most useful of all semiconductor devices. Many types of diode are used for a wide range of applications. Rectifier diodes are a vital component in power supplies where they are used to convert AC mains (line) voltage to DC. Zener diodes are used for voltage stabilization, preventing unwanted variations in DC supplies within a circuit.

Signal diodes are used to obtain the audio and video signals from transmitted radio frequency signals (demodulation) and can also be used to shape and modify AC signal waveforms (clipping, limiting and DC restoration). Diodes are also built into many digital integrated circuits to protect them from dangerously large voltage spikes.

Types of diodes :

P-N junction diode


Zener diode


Shocttky diode


Led


Photodiode


Tunnel diode


Variable capacitor diode

Comments

Post a Comment

Popular posts from this blog

relay

A relay is an electrically operated switch. These are remote control electrical switches that are controlled by another switch. A relay is used to isolate one electrical circuit from another. It allows a low current control circuit to make or break an electrically isolated high current circuit path. The basic relay consists of a coil and a set of contacts. The most common relay coil is a length of magnet wire wrapped around a metal core. When voltage is applied to the coil, current passes through the wire and creates a magnetic field. This magnetic field pulls the contacts together and holds them there until the current flow in the coil has stopped. The diagram below shows the parts of a simple relay. Operation: When a current flows through the coil, the resulting magnetic field attracts an armature that is mechanically linked to a moving contact. The movement either makes or breaks a connection with a fixed contact. When the current is switched off, the armature is usually returned by...

P-N junction diode

A P-N junction diode is a basic diode. It is the combination of P-type and N-type semiconductor. symbol : P-N junction and potential barrier : A P-N junction is the basic building block of many semiconductor devices like diodes and transistors. P -n  junctions are formed by joining  n -type and  p -type semiconductor materials. Since the  n -type region has a high electron concentration and the  p -type a high hole concentration this difference in concentration creates density mismatch across junction which results to creation of potential barrier. The value of potential barrier v b  is 0.3 for germanium and 0.7 for silicon. Working : Forward bias: Application of positive charge at p-side pushes holes towards potential barrier and similarly negative charge at N-side pushes electrons towards barrier if input voltage is grater than potential barrier then electrons diffuse from the  n -type side to the p-type side. Similarly, holes flow by diffusion from the p-type side to the n-type side...

resistance & resistivity

Resistance is a measure of the opposition to current flow in an electrical circuit. Resistance is measured in ohms, symbolized by the Greek letter omega (Ω). Ohms are named after George Simon Ohm (1784-1854), a German physicist who studied the relationship between voltage, current and resistance. He is credited for formulating Ohm’s Law. The electrical resistance of a circuit component or device is defined as the ratio of the voltage applied to the electric current which flows through it. The higher the resistance, the lower the current flow and vice-versa. resistivity : The electrical resistance per unit length, area, or volume of a substance is known as resistivity. Table of resistivity Material Resistivity ρ (ohm m) Temperature coefficient α per degree C Conductivity σ x 10 7 /Ωm Ref Silver 1.59 x10 -8 .0038 6.29 3 Copper 1.68 x10 -8 .00386 5.95 3 Copper, annealed 1.72 x10 -8 .00393 5.81 2 Aluminum 2.65 x10 -8 .00429 3.77 1 Tungsten 5.6 x10 -8 .0045 1.79 1 Iron 9.71 x10 -8 .00651...