Skip to main content

HOW AN LED WORKS ?

Introduction:


A light-emitting diode (LED) is a semiconductor light source. LED's are used as indicator lamps in many devices, and are increasingly used for lighting. Introduced as a practical electronic component in 1962, early LED's emitted low-intensity red light, but modern versions are available across the visible, ultraviolet and infrared wavelengths, with very high brightness.

The LED is based on the semiconductor diode. When a diode is forward biased, electrons are able to recombine with holes within the device, releasing energy in the form of photons. This effect is called electroluminescence and the color of the light (corresponding to the energy of the photon) is determined by the energy gap of the semiconductor. An LED is usually small in area (less than 1 mm2), and integrated optical components are used to shape its radiation pattern and assist in reflection. LEDs present many advantages over incandescent light sources including lower energy consumption, longer lifetime, improved robustness, smaller size, faster switching, and greater durability and reliability. However, they are relatively expensive and require more precise current and heat management than traditional light sources. Current LED products for general lighting are more expensive to buy than fluorescent lamp sources of comparable output.

Working:


Charge-carriers—electrons and holes—flow into the junction from electrodes with different voltages. When an electron meets a hole, it falls into a lower energy level, and releases energy in the form of a photon. The wavelength of the light emitted, and therefore its color, depends on the band gap energy of the materials forming the p-n junction.

12

 

In silicon or germanium diodes, the electrons and holes recombine by a non-radiative transition which produces no optical emission, because these are indirect band gap materials. The materials used for the LED have a direct band gap with energies corresponding to near-infrared, visible or near-ultraviolet light.

Colors and materials :
















































































s.noColorWavelength (nm)Voltage (V)Semiconductor Material
 1Infraredλ > 760ΔV < 1.9Gallium arsenide (GaAs)
Aluminum gallium arsenide (AlGaAs)
 2Red610 < λ < 7601.63 < ΔV < 2.03Aluminum  gallium arsenide (AlGaAs)
Gallium arsenide phosphide (GaAsP)
Aluminium gallium indium phosphide (AlGaInP)
Gallium(III) phosphide (GaP)
 3Orange590 < λ < 6102.03 < ΔV < 2.10Gallium arsenide phosphide (GaAsP)
Aluminum gallium indium phosphide (AlGaInP)
Gallium(III) phosphide (GaP)
 4Yellow570 < λ < 5902.10 < ΔV < 2.18Gallium arsenide phosphide (GaAsP)
Aluminium gallium indium phosphide (AlGaInP)
Gallium(III) phosphide (GaP)
 5Green500 < λ < 5701.9[42] < ΔV < 4.0Indium gallium nitride (InGaN) / Gallium(III) nitride (GaN)
Gallium(III) phosphide (GaP)
Aluminium gallium indium phosphide (AlGaInP)
Aluminium gallium phosphide (AlGaP)
 6Blue450 < λ < 5002.48 < ΔV < 3.7Zinc selenide (ZnSe)
Indium gallium nitride (InGaN)
Silicon carbide (SiC) as substrate
Silicon (Si) as substrate — (under development)
 7Violet400 < λ < 4502.76 < ΔV < 4.0Indium gallium nitride (InGaN)
 8Purplemultiple types2.48 < ΔV < 3.7Dual blue/red LEDs,
blue with red phosphor,
or white with purple plastic
 9Ultravioletλ < 4003.1 < ΔV < 4.4Diamond (235 nm)
Boron nitride (215 nm)
Aluminium nitride (AlN) (210 nm)
Aluminium gallium nitride (AlGaN)
Aluminium gallium indium nitride (AlGaInN) — (down to 210 nm)
 10WhiteBroad spectrumΔV = 3.5Blue/UV diode with yellow phosphor

 

 

 

 

 

Comments

Post a Comment

Popular posts from this blog

inductor

An inductor is a passive electronic component that stores energy in the form of a magnetic field. In its simplest form, an inductor consists of a wire loop or coil. The inductance is directly proportional to the number of turns in the coil. Inductance also depends on the radius of the coil and on the type of material around which the coil is wound.   The standard unit of inductance is the Henry abbreviated H. This is a large unit. More common units are the micro Henry, abbreviated µH (1 µH =10 -6 H) and the milli Henry, abbreviated mH (1 mH =10 -3 H). Occasionally, the nano Henry (nH) is used (1 nH = 10 -9 H).             inductors in series & parallel : applications : Inductors are used extensively in analog circuits and signal processing. Applications range from the use of large inductors in power supplies, which in conjunction with filter capacitors remove  fluctuations from the direct current output.          

Transistor

Introduction: A transistor is a semiconductor device which is used to amplify the signals as well as in switching circuits. Generally, it consists of three terminals emitter(E), base(B) and collector(C) and two P-N junctions. It is one of the active components. It was invented by John Bardeen, William Shockley and Walter Brattain in 1948, in Bell Telephone Laboratories. Transistors are divided into different types depending on their construction and operation. Transistors are basically classified into two types; they are Bipolar Junction Transistors (BJT) and Field Effect Transistors (FET). The BJTs are again classified into NPN and PNP transistors. The FET transistors are classified into JFET and MOSFET. Junction FET transistors are classified into N-channel JFET and P-channel JFET depending on their function. MOSFET transistors are classified into Depletion mode and Enhancement mode. Again depletion and enhancement mode transistors are classified into N-channel JFET and P-channel. d...

schottky diode

introduction: schottky diode is named after named after German physicist Walter H. Schottky.  it is also called as hot carrier diode or surface barrier diode. [caption id="attachment_729" align="aligncenter" width="289"] symbol of schottky diode[/caption] construction : In P-N junction diode semiconductor(P-type)-semiconductor(N-type) junction is formed but, in the case of schottky diode metal-semiconductor junction is formed. basically metals used are molybdenum, platinum, chromium, tungsten Aluminium, gold e.t.c and the semiconductor used is N type silico n is used. working : Schottky diode is often referred as “majority carrier diode”.. When materials are joined, electrons in n-type silicon immediately flow into metal because the electrons in semi conductor are at higher energy level than metal and hence electron flow is established. The flow of electrons stops when Fermi level of two materials are at same level. Due to flow of electrons into m...