Skip to main content

P-N junction diode as Rectifier

Half wave rectifier:


half-wave-rectifier

Full wave rectifier:


full-wave-rectifier

with filter across output terminals :


Capacitor blocks dc signal and allows ac signal through it. here same thing works capacitor short circuits ac signal.

filter

 

 

Comments

Post a Comment

Popular posts from this blog

Tellegens Theorem

Tellegen theorem states that  the summation of instantaneous powers for the n number of branches in an electrical network is zero. Suppose n number of branches in an electrical network have i 1 , i 2 , i 3 , .............i n respective instantaneous currents through them. These currents satisfy Kirchhoff's Current Law . Again, suppose these branches have instantaneous voltages across them are v 1 , v 2 , v 3 , ........... v n respectively. If these voltages across these elements satisfy Kirchhoff Voltage Law then,

relay

A relay is an electrically operated switch. These are remote control electrical switches that are controlled by another switch. A relay is used to isolate one electrical circuit from another. It allows a low current control circuit to make or break an electrically isolated high current circuit path. The basic relay consists of a coil and a set of contacts. The most common relay coil is a length of magnet wire wrapped around a metal core. When voltage is applied to the coil, current passes through the wire and creates a magnetic field. This magnetic field pulls the contacts together and holds them there until the current flow in the coil has stopped. The diagram below shows the parts of a simple relay. Operation: When a current flows through the coil, the resulting magnetic field attracts an armature that is mechanically linked to a moving contact. The movement either makes or breaks a connection with a fixed contact. When the current is switched off, the armature is usually returned by

Fundamentals of Electromagnetism

Electrostatics Columb’s law  Electric Flux density & Electric field intensity Magnetic Flux density &Magnetic field intensity Gauss law Energy density Continuity equation Magneto statics Biot- savart law Amperes circuit law Magnetic momentum & magnetic flux Boundary conditions Applications (Hall effect) Lorentz force equation conduction, polarization & magnetization Maxwell equations Faraday law, ampere law, gauss law of electric and magnetic fields Law of conservation of charge & boundary conditions Hertzian dipole