Skip to main content

tunnel diode

introduction :


A tunnel diode is a highly doped semiconductor device that conducts current by quantum mechanical tunneling. it is also called as esaki diode named after leo esaki who got Nobel  prize in physics for discovering electron tunneling in 1973.



2000px-Tunnel_diode_symbol.svg.pngdiodo-de-tunelamento-ressonante-teoria-de-operao-e-aplicaes-5-638Tunneling Phenomenon:


According to classical laws of physics, a particle must have an energy at least equal to the height of a potential-energy barrier if it has to move from one side of the barrier to the other. In other words, energy has to be supplied from some external source so that the electrons on one side of junction climb over the junction barrier to reach the other side. However if the barrier is thin such as in tunnel diode, the Schrodinger equation(Quantum Mechanics) indicates that there is a large probability that an electron will penetrate through the barrier. This will happen without any loss of energy on the part of electron. This quantum mechanical behavior is referred to as tunneling and the high-impurity P-N junction devices are called tunnel-diodes. The tunneling phenomenon is a majority carrier effect.


Final statement: if electron energy is grater than or equal to height of barrier then electron crosses that barrier without any loss of energy.



Construction:


Depletion region in tunnel diode is very small due to very heavy doping.Tunnel diodes are usually fabricated from germanium, gallium or gallium arsenide. These all have small forbidden energy gaps and high ion motilities. Silicon is not used in the fabrication of tunnel diodes due to low (Ip,I v)value.


A small tin dot is soldered or alloyed to a heavily doped pellet of n-type Ge, GaSb or GaAs. The pellet is then soldered to anode which is also used for heat dissipation. The cathode contact is connected to the tin dot via a mesh screen used to reduce inductance. The diode has a ceramic body and a hermetically sealing lid on top.


tunnel-diode-construction



Working and characteristics :


For small forward voltages owing to high carrier concentrations in tunnel diode and due to tunneling effect the forward resistance will be very small. As voltage increase she current also increases till the current reaches Peak current. If the voltage applied to tunnel diode is increased beyond the peak voltage the current will start decreasing. This is negative resistance region. It prevails till valley point. At valley point the current through the diode will be minimum. Beyond valley point the tunnel diode acts as normal diode. In reverse biased condition also Tunnel diode is an excellent conductor due to its high doping concentrations.

Tunnel diodes are made from Germanium or gallium arsenide due to their highest peak voltage to valley point swing. The ratio of high peak current to valley current quantifies the maximum voltage swing allowed in negative resistance region.

untitled-1

 

applications:



  • Tunnel diode can make a very stable oscillator circuit.

  • It is also used as an amplifiers and mixers.

  • Due to the tunneling mechanism, it is used as an ultra high speed switch.

  • Due to its negative resistance, it is used as a relaxation oscillator circuit.

Comments

Post a Comment

Popular posts from this blog

inductor

An inductor is a passive electronic component that stores energy in the form of a magnetic field. In its simplest form, an inductor consists of a wire loop or coil. The inductance is directly proportional to the number of turns in the coil. Inductance also depends on the radius of the coil and on the type of material around which the coil is wound.   The standard unit of inductance is the Henry abbreviated H. This is a large unit. More common units are the micro Henry, abbreviated µH (1 µH =10 -6 H) and the milli Henry, abbreviated mH (1 mH =10 -3 H). Occasionally, the nano Henry (nH) is used (1 nH = 10 -9 H).             inductors in series & parallel : applications : Inductors are used extensively in analog circuits and signal processing. Applications range from the use of large inductors in power supplies, which in conjunction with filter capacitors remove  fluctuations from the direct current output.          

Transistor

Introduction: A transistor is a semiconductor device which is used to amplify the signals as well as in switching circuits. Generally, it consists of three terminals emitter(E), base(B) and collector(C) and two P-N junctions. It is one of the active components. It was invented by John Bardeen, William Shockley and Walter Brattain in 1948, in Bell Telephone Laboratories. Transistors are divided into different types depending on their construction and operation. Transistors are basically classified into two types; they are Bipolar Junction Transistors (BJT) and Field Effect Transistors (FET). The BJTs are again classified into NPN and PNP transistors. The FET transistors are classified into JFET and MOSFET. Junction FET transistors are classified into N-channel JFET and P-channel JFET depending on their function. MOSFET transistors are classified into Depletion mode and Enhancement mode. Again depletion and enhancement mode transistors are classified into N-channel JFET and P-channel. d...

schottky diode

introduction: schottky diode is named after named after German physicist Walter H. Schottky.  it is also called as hot carrier diode or surface barrier diode. [caption id="attachment_729" align="aligncenter" width="289"] symbol of schottky diode[/caption] construction : In P-N junction diode semiconductor(P-type)-semiconductor(N-type) junction is formed but, in the case of schottky diode metal-semiconductor junction is formed. basically metals used are molybdenum, platinum, chromium, tungsten Aluminium, gold e.t.c and the semiconductor used is N type silico n is used. working : Schottky diode is often referred as “majority carrier diode”.. When materials are joined, electrons in n-type silicon immediately flow into metal because the electrons in semi conductor are at higher energy level than metal and hence electron flow is established. The flow of electrons stops when Fermi level of two materials are at same level. Due to flow of electrons into m...