Skip to main content

inductor

An inductor is a passive electronic component that stores energy in the form of a magnetic field. In its simplest form, an inductor consists of a wire loop or coil. The inductance is directly proportional to the number of turns in the coil. Inductance also depends on the radius of the coil and on the type of material around which the coil is wound.

indictor 1.jpg

 

The standard unit of inductance is the Henry abbreviated H. This is a large unit. More common units are the micro Henry, abbreviated µH (1 µH =10-6H) and the milli Henry, abbreviated mH (1 mH =10-3 H). Occasionally, the nano Henry (nH) is used (1 nH = 10-9 H).

introduction-to-electronics-30-728.jpg

 

 

 

 

 

 

inductors in series & parallel :


inductor 2.jpg

applications :


Inductors are used extensively in analog circuits and signal processing. Applications range from the use of large inductors in power supplies, which in conjunction with filter capacitors remove  fluctuations from the direct current output.

 

 

 

 

 

Comments

Post a Comment

Popular posts from this blog

Tellegens Theorem

Tellegen theorem states that  the summation of instantaneous powers for the n number of branches in an electrical network is zero. Suppose n number of branches in an electrical network have i 1 , i 2 , i 3 , .............i n respective instantaneous currents through them. These currents satisfy Kirchhoff's Current Law . Again, suppose these branches have instantaneous voltages across them are v 1 , v 2 , v 3 , ........... v n respectively. If these voltages across these elements satisfy Kirchhoff Voltage Law then,

relay

A relay is an electrically operated switch. These are remote control electrical switches that are controlled by another switch. A relay is used to isolate one electrical circuit from another. It allows a low current control circuit to make or break an electrically isolated high current circuit path. The basic relay consists of a coil and a set of contacts. The most common relay coil is a length of magnet wire wrapped around a metal core. When voltage is applied to the coil, current passes through the wire and creates a magnetic field. This magnetic field pulls the contacts together and holds them there until the current flow in the coil has stopped. The diagram below shows the parts of a simple relay. Operation: When a current flows through the coil, the resulting magnetic field attracts an armature that is mechanically linked to a moving contact. The movement either makes or breaks a connection with a fixed contact. When the current is switched off, the armature is usually returned by

Fundamentals of Electromagnetism

Electrostatics Columb’s law  Electric Flux density & Electric field intensity Magnetic Flux density &Magnetic field intensity Gauss law Energy density Continuity equation Magneto statics Biot- savart law Amperes circuit law Magnetic momentum & magnetic flux Boundary conditions Applications (Hall effect) Lorentz force equation conduction, polarization & magnetization Maxwell equations Faraday law, ampere law, gauss law of electric and magnetic fields Law of conservation of charge & boundary conditions Hertzian dipole