Skip to main content

Maxwell equations

Maxwell equations:


The electric and magnetic fields are governed by a set of four laws, known as Maxwell’s equations. Maxwell’s equations form the basis for the entire electromagnetic field theory.

Max well’s equations in integral form:

1. Faraday’s law:


                        A time-varying magnetic field gives rise to an electric field. Specifically, the

electromotive force around a closed path C is equal to the negative of the time rate of

increase of the magnetic flux enclosed by that path, that is,faraday

     2. Ampere’s circuit law:

Time varying electric fields give rise to magnetic fields. Specifically, the magnetomotive force (mmf) around a closed path C is equal to the sum of the current enclosed by that path due to actual flow of charges and the displacement current due to the time rate of increase of the electric flux (or displacement flux) enclosed by that path; that is,

ampere

        3. Gauss law of electric field:

Gauss’ law for the electric field states that electric charges give rise to electric field.Specifically, the electric flux emanating from a closed surface S is equal to the charge enclosed by that surface, that is,

gauss-electric

4. Gauss law of magnetic field:

Gauss’ law for the magnetic field states that the magnetic flux emanating from a closed surface S is equal to zero, that is,

gauss magnetic.png

Max well’s equations in differential form:

max-well-differential

Comments

Post a Comment

Popular posts from this blog

P-N junction diode

A P-N junction diode is a basic diode. It is the combination of P-type and N-type semiconductor. symbol : P-N junction and potential barrier : A P-N junction is the basic building block of many semiconductor devices like diodes and transistors. P -n  junctions are formed by joining  n -type and  p -type semiconductor materials. Since the  n -type region has a high electron concentration and the  p -type a high hole concentration this difference in concentration creates density mismatch across junction which results to creation of potential barrier. The value of potential barrier v b  is 0.3 for germanium and 0.7 for silicon. Working : Forward bias: Application of positive charge at p-side pushes holes towards potential barrier and similarly negative charge at N-side pushes electrons towards barrier if input voltage is grater than potential barrier then electrons diffuse from the  n -type side to the p-type side. Similarly, holes flow by diffusion from the p-type side to the n-type side...

resistance & resistivity

Resistance is a measure of the opposition to current flow in an electrical circuit. Resistance is measured in ohms, symbolized by the Greek letter omega (Ω). Ohms are named after George Simon Ohm (1784-1854), a German physicist who studied the relationship between voltage, current and resistance. He is credited for formulating Ohm’s Law. The electrical resistance of a circuit component or device is defined as the ratio of the voltage applied to the electric current which flows through it. The higher the resistance, the lower the current flow and vice-versa. resistivity : The electrical resistance per unit length, area, or volume of a substance is known as resistivity. Table of resistivity Material Resistivity ρ (ohm m) Temperature coefficient α per degree C Conductivity σ x 10 7 /Ωm Ref Silver 1.59 x10 -8 .0038 6.29 3 Copper 1.68 x10 -8 .00386 5.95 3 Copper, annealed 1.72 x10 -8 .00393 5.81 2 Aluminum 2.65 x10 -8 .00429 3.77 1 Tungsten 5.6 x10 -8 .0045 1.79 1 Iron 9.71 x10 -8 .00651...

The jargon

[caption id="attachment_43" align="alignnone" width="2717"] Be passionately curious[/caption]