Skip to main content

Maxwell equations

Maxwell equations:


The electric and magnetic fields are governed by a set of four laws, known as Maxwell’s equations. Maxwell’s equations form the basis for the entire electromagnetic field theory.

Max well’s equations in integral form:

1. Faraday’s law:


                        A time-varying magnetic field gives rise to an electric field. Specifically, the

electromotive force around a closed path C is equal to the negative of the time rate of

increase of the magnetic flux enclosed by that path, that is,faraday

     2. Ampere’s circuit law:

Time varying electric fields give rise to magnetic fields. Specifically, the magnetomotive force (mmf) around a closed path C is equal to the sum of the current enclosed by that path due to actual flow of charges and the displacement current due to the time rate of increase of the electric flux (or displacement flux) enclosed by that path; that is,

ampere

        3. Gauss law of electric field:

Gauss’ law for the electric field states that electric charges give rise to electric field.Specifically, the electric flux emanating from a closed surface S is equal to the charge enclosed by that surface, that is,

gauss-electric

4. Gauss law of magnetic field:

Gauss’ law for the magnetic field states that the magnetic flux emanating from a closed surface S is equal to zero, that is,

gauss magnetic.png

Max well’s equations in differential form:

max-well-differential

Comments

Post a Comment

Popular posts from this blog

P-N junction diode

A P-N junction diode is a basic diode. It is the combination of P-type and N-type semiconductor. symbol : P-N junction and potential barrier : A P-N junction is the basic building block of many semiconductor devices like diodes and transistors. P -n  junctions are formed by joining  n -type and  p -type semiconductor materials. Since the  n -type region has a high electron concentration and the  p -type a high hole concentration this difference in concentration creates density mismatch across junction which results to creation of potential barrier. The value of potential barrier v b  is 0.3 for germanium and 0.7 for silicon. Working : Forward bias: Application of positive charge at p-side pushes holes towards potential barrier and similarly negative charge at N-side pushes electrons towards barrier if input voltage is grater than potential barrier then electrons diffuse from the  n -type side to the p-type side. Similarly, holes flow by diffusion from the p-type side to the n-type side...

inductor

An inductor is a passive electronic component that stores energy in the form of a magnetic field. In its simplest form, an inductor consists of a wire loop or coil. The inductance is directly proportional to the number of turns in the coil. Inductance also depends on the radius of the coil and on the type of material around which the coil is wound.   The standard unit of inductance is the Henry abbreviated H. This is a large unit. More common units are the micro Henry, abbreviated µH (1 µH =10 -6 H) and the milli Henry, abbreviated mH (1 mH =10 -3 H). Occasionally, the nano Henry (nH) is used (1 nH = 10 -9 H).             inductors in series & parallel : applications : Inductors are used extensively in analog circuits and signal processing. Applications range from the use of large inductors in power supplies, which in conjunction with filter capacitors remove  fluctuations from the direct current output.          

Transistor

Introduction: A transistor is a semiconductor device which is used to amplify the signals as well as in switching circuits. Generally, it consists of three terminals emitter(E), base(B) and collector(C) and two P-N junctions. It is one of the active components. It was invented by John Bardeen, William Shockley and Walter Brattain in 1948, in Bell Telephone Laboratories. Transistors are divided into different types depending on their construction and operation. Transistors are basically classified into two types; they are Bipolar Junction Transistors (BJT) and Field Effect Transistors (FET). The BJTs are again classified into NPN and PNP transistors. The FET transistors are classified into JFET and MOSFET. Junction FET transistors are classified into N-channel JFET and P-channel JFET depending on their function. MOSFET transistors are classified into Depletion mode and Enhancement mode. Again depletion and enhancement mode transistors are classified into N-channel JFET and P-channel. d...