Skip to main content

Maxwell equations

Maxwell equations:


The electric and magnetic fields are governed by a set of four laws, known as Maxwell’s equations. Maxwell’s equations form the basis for the entire electromagnetic field theory.

Max well’s equations in integral form:

1. Faraday’s law:


                        A time-varying magnetic field gives rise to an electric field. Specifically, the

electromotive force around a closed path C is equal to the negative of the time rate of

increase of the magnetic flux enclosed by that path, that is,faraday

     2. Ampere’s circuit law:

Time varying electric fields give rise to magnetic fields. Specifically, the magnetomotive force (mmf) around a closed path C is equal to the sum of the current enclosed by that path due to actual flow of charges and the displacement current due to the time rate of increase of the electric flux (or displacement flux) enclosed by that path; that is,

ampere

        3. Gauss law of electric field:

Gauss’ law for the electric field states that electric charges give rise to electric field.Specifically, the electric flux emanating from a closed surface S is equal to the charge enclosed by that surface, that is,

gauss-electric

4. Gauss law of magnetic field:

Gauss’ law for the magnetic field states that the magnetic flux emanating from a closed surface S is equal to zero, that is,

gauss magnetic.png

Max well’s equations in differential form:

max-well-differential

Comments

Post a Comment

Popular posts from this blog

Tellegens Theorem

Tellegen theorem states that  the summation of instantaneous powers for the n number of branches in an electrical network is zero. Suppose n number of branches in an electrical network have i 1 , i 2 , i 3 , .............i n respective instantaneous currents through them. These currents satisfy Kirchhoff's Current Law . Again, suppose these branches have instantaneous voltages across them are v 1 , v 2 , v 3 , ........... v n respectively. If these voltages across these elements satisfy Kirchhoff Voltage Law then,

relay

A relay is an electrically operated switch. These are remote control electrical switches that are controlled by another switch. A relay is used to isolate one electrical circuit from another. It allows a low current control circuit to make or break an electrically isolated high current circuit path. The basic relay consists of a coil and a set of contacts. The most common relay coil is a length of magnet wire wrapped around a metal core. When voltage is applied to the coil, current passes through the wire and creates a magnetic field. This magnetic field pulls the contacts together and holds them there until the current flow in the coil has stopped. The diagram below shows the parts of a simple relay. Operation: When a current flows through the coil, the resulting magnetic field attracts an armature that is mechanically linked to a moving contact. The movement either makes or breaks a connection with a fixed contact. When the current is switched off, the armature is usually returned by

Fundamentals of Electromagnetism

Electrostatics Columb’s law  Electric Flux density & Electric field intensity Magnetic Flux density &Magnetic field intensity Gauss law Energy density Continuity equation Magneto statics Biot- savart law Amperes circuit law Magnetic momentum & magnetic flux Boundary conditions Applications (Hall effect) Lorentz force equation conduction, polarization & magnetization Maxwell equations Faraday law, ampere law, gauss law of electric and magnetic fields Law of conservation of charge & boundary conditions Hertzian dipole